\(\int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx\) [501]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 292 \[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=-\frac {(2 a B-A b (1-n)) \cot (c+d x) (a+b \tan (c+d x))^{1+n}}{2 a^2 d}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}-\frac {(i A+B) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {a+b \tan (c+d x)}{a-i b}\right ) (a+b \tan (c+d x))^{1+n}}{2 (i a+b) d (1+n)}-\frac {(A+i B) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {a+b \tan (c+d x)}{a+i b}\right ) (a+b \tan (c+d x))^{1+n}}{2 (a+i b) d (1+n)}+\frac {\left (2 a^2 A-2 a b B n+A b^2 (1-n) n\right ) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{2 a^3 d (1+n)} \]

[Out]

-1/2*(2*B*a-A*b*(1-n))*cot(d*x+c)*(a+b*tan(d*x+c))^(1+n)/a^2/d-1/2*A*cot(d*x+c)^2*(a+b*tan(d*x+c))^(1+n)/a/d-1
/2*(I*A+B)*hypergeom([1, 1+n],[2+n],(a+b*tan(d*x+c))/(a-I*b))*(a+b*tan(d*x+c))^(1+n)/(I*a+b)/d/(1+n)-1/2*(A+I*
B)*hypergeom([1, 1+n],[2+n],(a+b*tan(d*x+c))/(a+I*b))*(a+b*tan(d*x+c))^(1+n)/(a+I*b)/d/(1+n)+1/2*(2*A*a^2-2*a*
b*B*n+A*b^2*(1-n)*n)*hypergeom([1, 1+n],[2+n],1+b*tan(d*x+c)/a)*(a+b*tan(d*x+c))^(1+n)/a^3/d/(1+n)

Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3690, 3730, 3734, 3620, 3618, 70, 3715, 67} \[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=-\frac {\cot (c+d x) (2 a B-A b (1-n)) (a+b \tan (c+d x))^{n+1}}{2 a^2 d}+\frac {\left (2 a^2 A-2 a b B n+A b^2 (1-n) n\right ) (a+b \tan (c+d x))^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {b \tan (c+d x)}{a}+1\right )}{2 a^3 d (n+1)}-\frac {(B+i A) (a+b \tan (c+d x))^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {a+b \tan (c+d x)}{a-i b}\right )}{2 d (n+1) (b+i a)}-\frac {(A+i B) (a+b \tan (c+d x))^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {a+b \tan (c+d x)}{a+i b}\right )}{2 d (n+1) (a+i b)}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{n+1}}{2 a d} \]

[In]

Int[Cot[c + d*x]^3*(a + b*Tan[c + d*x])^n*(A + B*Tan[c + d*x]),x]

[Out]

-1/2*((2*a*B - A*b*(1 - n))*Cot[c + d*x]*(a + b*Tan[c + d*x])^(1 + n))/(a^2*d) - (A*Cot[c + d*x]^2*(a + b*Tan[
c + d*x])^(1 + n))/(2*a*d) - ((I*A + B)*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a - I*b)]*(a
+ b*Tan[c + d*x])^(1 + n))/(2*(I*a + b)*d*(1 + n)) - ((A + I*B)*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[
c + d*x])/(a + I*b)]*(a + b*Tan[c + d*x])^(1 + n))/(2*(a + I*b)*d*(1 + n)) + ((2*a^2*A - 2*a*b*B*n + A*b^2*(1
- n)*n)*Hypergeometric2F1[1, 1 + n, 2 + n, 1 + (b*Tan[c + d*x])/a]*(a + b*Tan[c + d*x])^(1 + n))/(2*a^3*d*(1 +
 n))

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3690

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n
 + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps \begin{align*} \text {integral}& = -\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}-\frac {\int \cot ^2(c+d x) (a+b \tan (c+d x))^n \left (-2 a B+A (b-b n)+2 a A \tan (c+d x)+A b (1-n) \tan ^2(c+d x)\right ) \, dx}{2 a} \\ & = -\frac {(2 a B-A b (1-n)) \cot (c+d x) (a+b \tan (c+d x))^{1+n}}{2 a^2 d}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}+\frac {\int \cot (c+d x) (a+b \tan (c+d x))^n \left (-2 a^2 A+2 a b B n-A b^2 (1-n) n-2 a^2 B \tan (c+d x)+b n (2 a B-A (b-b n)) \tan ^2(c+d x)\right ) \, dx}{2 a^2} \\ & = -\frac {(2 a B-A b (1-n)) \cot (c+d x) (a+b \tan (c+d x))^{1+n}}{2 a^2 d}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}+\frac {\int \left (-2 a^2 B+2 a^2 A \tan (c+d x)\right ) (a+b \tan (c+d x))^n \, dx}{2 a^2}+\frac {\left (-2 a^2 A+2 a b B n-A b^2 (1-n) n\right ) \int \cot (c+d x) (a+b \tan (c+d x))^n \left (1+\tan ^2(c+d x)\right ) \, dx}{2 a^2} \\ & = -\frac {(2 a B-A b (1-n)) \cot (c+d x) (a+b \tan (c+d x))^{1+n}}{2 a^2 d}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}+\frac {1}{2} (-i A-B) \int (1+i \tan (c+d x)) (a+b \tan (c+d x))^n \, dx+\frac {1}{2} (i A-B) \int (1-i \tan (c+d x)) (a+b \tan (c+d x))^n \, dx-\frac {\left (2 a^2 A-2 a b B n+A b^2 (1-n) n\right ) \text {Subst}\left (\int \frac {(a+b x)^n}{x} \, dx,x,\tan (c+d x)\right )}{2 a^2 d} \\ & = -\frac {(2 a B-A b (1-n)) \cot (c+d x) (a+b \tan (c+d x))^{1+n}}{2 a^2 d}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}+\frac {\left (2 a^2 A-2 a b B n+A b^2 (1-n) n\right ) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{2 a^3 d (1+n)}+\frac {(A-i B) \text {Subst}\left (\int \frac {(a-i b x)^n}{-1+x} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac {(A+i B) \text {Subst}\left (\int \frac {(a+i b x)^n}{-1+x} \, dx,x,-i \tan (c+d x)\right )}{2 d} \\ & = -\frac {(2 a B-A b (1-n)) \cot (c+d x) (a+b \tan (c+d x))^{1+n}}{2 a^2 d}-\frac {A \cot ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{2 a d}-\frac {(A-i B) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {a+b \tan (c+d x)}{a-i b}\right ) (a+b \tan (c+d x))^{1+n}}{2 (a-i b) d (1+n)}-\frac {(A+i B) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {a+b \tan (c+d x)}{a+i b}\right ) (a+b \tan (c+d x))^{1+n}}{2 (a+i b) d (1+n)}+\frac {\left (2 a^2 A-2 a b B n+A b^2 (1-n) n\right ) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^{1+n}}{2 a^3 d (1+n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.79 \[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=-\frac {\left (a^3 (a+i b) (A-i B) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {a+b \tan (c+d x)}{a-i b}\right )+(a-i b) \left (a^3 (A+i B) \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {a+b \tan (c+d x)}{a+i b}\right )-2 (a+i b) \left (a^2 A \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {b \tan (c+d x)}{a}\right )+b \left (a B \operatorname {Hypergeometric2F1}\left (2,1+n,2+n,1+\frac {b \tan (c+d x)}{a}\right )-A b \operatorname {Hypergeometric2F1}\left (3,1+n,2+n,1+\frac {b \tan (c+d x)}{a}\right )\right )\right )\right )\right ) (a+b \tan (c+d x))^{1+n}}{2 a^3 (a-i b) (a+i b) d (1+n)} \]

[In]

Integrate[Cot[c + d*x]^3*(a + b*Tan[c + d*x])^n*(A + B*Tan[c + d*x]),x]

[Out]

-1/2*((a^3*(a + I*b)*(A - I*B)*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a - I*b)] + (a - I*b)*
(a^3*(A + I*B)*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + I*b)] - 2*(a + I*b)*(a^2*A*Hyperge
ometric2F1[1, 1 + n, 2 + n, 1 + (b*Tan[c + d*x])/a] + b*(a*B*Hypergeometric2F1[2, 1 + n, 2 + n, 1 + (b*Tan[c +
 d*x])/a] - A*b*Hypergeometric2F1[3, 1 + n, 2 + n, 1 + (b*Tan[c + d*x])/a]))))*(a + b*Tan[c + d*x])^(1 + n))/(
a^3*(a - I*b)*(a + I*b)*d*(1 + n))

Maple [F]

\[\int \cot \left (d x +c \right )^{3} \left (a +b \tan \left (d x +c \right )\right )^{n} \left (A +B \tan \left (d x +c \right )\right )d x\]

[In]

int(cot(d*x+c)^3*(a+b*tan(d*x+c))^n*(A+B*tan(d*x+c)),x)

[Out]

int(cot(d*x+c)^3*(a+b*tan(d*x+c))^n*(A+B*tan(d*x+c)),x)

Fricas [F]

\[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{n} \cot \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^n*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*cot(d*x + c)^3*tan(d*x + c) + A*cot(d*x + c)^3)*(b*tan(d*x + c) + a)^n, x)

Sympy [F]

\[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right )^{n} \cot ^{3}{\left (c + d x \right )}\, dx \]

[In]

integrate(cot(d*x+c)**3*(a+b*tan(d*x+c))**n*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**n*cot(c + d*x)**3, x)

Maxima [F]

\[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{n} \cot \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^n*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^n*cot(d*x + c)^3, x)

Giac [F]

\[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{n} \cot \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^n*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^n*cot(d*x + c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \cot ^3(c+d x) (a+b \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^3\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^n \,d x \]

[In]

int(cot(c + d*x)^3*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^n,x)

[Out]

int(cot(c + d*x)^3*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^n, x)